Project: 11-Town of Bowdoinham-20; 01-Recycling Center-20
Client: Town of Bowdoinham

Construction Engineering Design: Calderwood Engineering
Design Computations by: Thad Chamberlain, EI
Design Check by: Eric Calderwood, PE

Project Notes:

Check Bowdoinham Recycling Building, determine capacity of additional members not addressed in the calculations and details dated December 2013.

References: NDS 2012, ASCE 7-14, IBC 2009

Check Design of additional beam supporting second floor:

(4) 2×8 's at single span between additional support columns:

$$
\mathrm{b}_{\text {beam }}:=1.5 \text { in } \quad \mathrm{d}_{\text {beam }}:=7.25 \text { in }
$$

$$
\mathrm{L}_{\text {beam }}:=12 \mathrm{ft} \quad \text { spacing between columns }
$$

$\mathrm{w}_{1}:=3 \mathrm{ft}+2$ in \quad distance from center of column to center of exterior column
$\mathrm{w}_{2}:=8 \mathrm{ft}+10.25 \mathrm{in}$ distance from center of column to center of interior column
$\sigma_{\mathrm{LL}}:=125 \mathrm{psf} \quad$ light storage warehouse (From Table 4-1, ASCE 7)
$\sigma_{\text {floor }}:=5 \mathrm{psf} \quad$ timber framing, assume 5 psf (see pg 6 of 93 of original calculations)

Calculate total load applied by beam:

$$
\mathrm{w}_{\text {beam }}:=\left(\sigma_{\mathrm{LL}}+\sigma_{\text {floor }}\right) \cdot\left(\frac{\mathrm{w}_{1}}{2}+\frac{\mathrm{w}_{2}}{2}\right)+45 \mathrm{pcf} \cdot\left(4 \cdot \mathrm{~b}_{\text {beam }} \cdot \mathrm{d}_{\text {beam }}\right)=794.948 \mathrm{plf}
$$

$$
\mathrm{P}_{\text {beam }}:=\frac{\mathrm{w}_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}}{2}=4.77 \mathrm{kip}
$$

Calculate beam in bearing:

$\mathrm{F}_{\text {cperp }}:=335 \mathrm{psi}$			SPF No. 2 South, Ref.	NDS 2012
$\mathrm{l}_{\text {bear }}:=2.5$ in			length of bearing	
$\mathrm{C}_{\mathrm{m}}:=1.0$	$C_{t}:=1.0$	$\mathrm{C}_{\mathrm{i}}:=1.0$	NDS 4.3.3/4/8	

$\mathrm{C}_{\mathrm{b}}:=\frac{\mathrm{l}_{\text {bear }}+0.375 \text { in }}{\mathrm{l}_{\text {bear }}}=1.15 \quad$ NDS 3.10-2
$\mathrm{F}_{\text {cperp }}{ }^{\prime}:=\mathrm{F}_{\text {cperp }} \cdot \mathrm{C}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{b}}=385.25$ psi
$\mathrm{A}_{\text {bear }}:=\mathrm{l}_{\text {bear }} \cdot \mathrm{b}_{\text {beam }}=3.75 \mathrm{in}^{2}$

This is the reaction load at the end of the beam

SPF No. 2 South, Ref. NDS 2012
length of bearing
NDS 4.3.3/4/8

NDS Table 4.3.1
total bearing area of single beam

Check Design of additional beam supporting second floor:

$\mathrm{f}_{\text {cperp }}:=\frac{\mathrm{P}_{\text {beam }}}{\mathrm{A}_{\text {bear }} \cdot 4}=317.979 \mathrm{psi}$
Check := if $\mathrm{f}_{\text {cperp }} \leq \mathrm{F}_{\text {cperp }}{ }^{\prime} \quad=$ "Ok for bearing"
|"Ok for bearing" else
||"Check"
2.5 inches of bearing is required for the 2×8 's, shift column as required to provide enough bearing for each beam, or install additional 6×6 column.

Check concrete blocks under Truss columns:

Existing 7"x7"x5" concrete blocks in compression:

Capacities of Tapcon Blue Anchors:

PERFORMANCE TABLES

blue, white, AND Stainless

ULTIMATE TENSION AND SHEAR VALUES (LBS/KN) IN CONCRETE

ANCHOR in.(mm)	MIN. DEPTH OF EMBEDMENT in.(mm)	Pe $=2000 \mathrm{PSI}$ (13.8 MPa)		P' = $\mathbf{3 0 0 0} \mathrm{PSI}$ (20.7 MPa)		$\mathbf{P c}=4000 \mathrm{PS1}(27.6 \mathrm{MPa})$		$\mathbf{P r} \mathbf{c}=5000 \mathrm{PSI}(34.5 \mathrm{MPa})$	
		TENSION Lbs. (kN)	$\begin{aligned} & \text { SHEAR } \\ & \text { Lbs. (kN) } \end{aligned}$	tension Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	$\begin{aligned} & \text { SHEAR } \\ & \text { Lbs. (kNO) } \end{aligned}$	TENSION Lbs. (kN)	$\begin{aligned} & \text { SHEAR } \\ & \text { Lbs. (kNO) } \end{aligned}$
3/16 (4.8)	1 (25.4)	600 (2.7)	720 (3.2)	625 (2.8)	720 (3.2)	650 (2.9)	720 (3.2)	800 (3.6)	860 (3.8)
	1-1/4 (31.8)	945 (3.7)	720 (3.2)	858 (3.8)	720 (3.2)	870 (3.9)	720 (3.2)	1.010 (4.5)	860 (3.8)
	1-1/2 (38.1)	1,090 (4.8)	850 (3.8)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,220 (4.8)	860 (3.8)
	1-3/4 (44.5)	1,450 (6.5)	870 (3.9)	1455 (6.5)	870 (3.9)	1.460 (6.5)	990 (4.4)	1,730 (7.7)	990 (4.4)
1/4 (6.4)	$1(25.4)$	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1.160 (5.2)	900 (4.0)	1.270 (5.6)	1,360 (6.1)	1.515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6,1)	1,200 (5.3)	1.600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2.020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (123)	1,670 (7.4)

Safe working loads for singla installation under static loading should not excsed 25% of the ultimate load capocty.

ULTIMATE TENSION AND SHEAR VALUES (LBS/KN) IN HOLLOW BLOCK

$\begin{aligned} & \text { ANCHOR } \\ & \text { DIA } \\ & \text { In. }(\mathrm{mm}) \end{aligned}$	ANCHOR EMEEDMENT in. (mm)	LIEHTWEEHT BLOCK		MEDIUM WEICHT BLOCK	
		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (1.8)	500 (2.2)	1,000 (4.4)

Safo working loads for singla installation under static loading should not exceed 25 N of the ultimate load capacty. NOTE: $3 / 1 \mathrm{E}^{\prime \prime}$ Tapcon requires $5 / 32^{*}$ bit, $1 / 4^{\prime \prime}$ Tapcon requires $3 / 16^{\prime \prime}$ bit

ALLOWABLE EDGE AND SPACING DISTANCES

PARAMETER	ANCHOR DIA. In.(mm)	NORMAL WEICHT CONCRETE			CONCRETE MASONRY UNITS (CMU)		
		FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distnce Inchos)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (MInImal Distance Inches)	LOAD REDUCTION FACTOR
Spacing Between Anchors - Tension	$\begin{gathered} 3 / 16 \\ 1 / 4 \end{gathered}$	3	$\begin{gathered} 1-1 / 2 \\ 2 \end{gathered}$	$\begin{aligned} & 0.73 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\frac{1-1 / 2}{2}$	$\begin{aligned} & 1.00 \\ & 0.84 \end{aligned}$
Spacing Between Anchors - Shear	$\begin{gathered} 3 / 16 \\ 1 / 4 \end{gathered}$	3 4	$\begin{gathered} 1-1 / 2 \\ 2 \end{gathered}$	$\begin{aligned} & 0.83 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{gathered} 1-1 / 2 \\ 2 \end{gathered}$	$\begin{aligned} & 1.00 \\ & 0.81 \end{aligned}$
Edge Distance Tension	$\begin{gathered} 3 / 16 \\ V / 4 \end{gathered}$	$\begin{aligned} & 1-7 / 9 \\ & 2-1 / 2 \end{aligned}$	$\begin{gathered} 1 \\ 1-1 / 4 \end{gathered}$	$\begin{aligned} & 0.83 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.81 \end{aligned}$
Edge Distance Shear	$\begin{gathered} 3 / 16 \\ V / 4 \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ 3 \end{gathered}$	$\begin{aligned} & 1-1 / 8 \\ & 1-1 / 2 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.59 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.80 \end{aligned}$

For 55.1 inch $=25,4 \mathrm{~mm}$

Design connection for existing wall to foundation at swinging door:

Determine applied load:

$$
\begin{array}{|l|l}
\hline \mathrm{w}_{\text {gap }}:=2.5 \mathrm{ft} & \text { width of section not connected to floor } \\
\hline \mathrm{h}_{\mathrm{gap}}:=15 \mathrm{ft}+3 \mathrm{in} & \text { height of section not connected to floor } \\
\hline
\end{array}
$$

Wind load on this section of wall:

$\mathrm{V}_{\text {wind }}:=115 \mathrm{mph}$	wind speed (ASCE 7-16, Figure 26.5-1b) Category 2 building
$\mathrm{k}_{\mathrm{d}}:=0.85$	ASCE 7-16, Table 26.6-1
$\mathrm{k}_{\mathrm{z}}:=0.85$	ASCE 7-16, Table 26.10-1 (less than 15ft above ground level)
$\mathrm{k}_{\mathrm{e}}:=1.00$	ASCE 7-16, Table 26.9-1
$\mathrm{k}_{\mathrm{zt}}:=1.0$	ASCE 7-16, 26.8.2

$\mathrm{q}_{\mathrm{z}}:=0.00256 \cdot \mathrm{k}_{\mathrm{z}} \cdot \mathrm{k}_{\mathrm{zt}} \cdot \mathrm{k}_{\mathrm{d}} \cdot \mathrm{k}_{\mathrm{e}} \cdot\left(\frac{\mathrm{V}_{\text {wind }}}{\mathrm{mph}}\right)^{2} \cdot \mathrm{psf}=24.461 \mathrm{psf} \quad$ ASCE 7-16, 26.10-1
$\mathrm{G}:=0.85 \quad$ Gust effect factor, ASCE 7-16, 26.11.1
$\mathrm{Gcp}_{\mathrm{i}}:=-0.18 \quad$ ASCE 7-16, Table 26.13-1
$\mathrm{C}_{\mathrm{p}}:=0.8 \quad$ ASCE 7-16, Figure 27.3-1
$P_{\text {wind }}:=\left(\mathrm{q}_{\mathrm{z}} \cdot \mathrm{C}_{\mathrm{p}} \cdot G-\mathrm{q}_{\mathrm{z}} \cdot \mathrm{Gcp}_{\mathrm{i}}\right) \cdot \frac{\mathrm{h}_{\text {gap }}}{2} \cdot \mathrm{w}_{\text {gap }}=0.401 \mathrm{kip} \quad$ ASCE 7-16, 27.3-1
This is the wind load reaction at each end of the wall section, design connection to footing to carry this applied load: Install nail plate (2×4) into concrete slab with concrete screws, install 4×4 block under existing end wall column and nail column to block, and block to nail plate.

Design Nail Plate:

$2 x$ Nail plate, calculate number of concrete anchors required to carry wind loads:
(2) 1/4" Tapcon Blue Concrete Screws or equivalent:

$$
\mathrm{N}_{\text {screw }}:=3 \quad \phi_{\text {screw }}:=0.25 \text { in }
$$

$\mathrm{V}_{\text {screw }}:=900 \mathrm{lbf} \quad$ assuming 1 " of embedment into 2 ksi concrete
$\mathrm{f}_{\text {red_spacing }}:=0.82 \quad$ Reduction for 2 in spacing (minimum allowable)
$\mathrm{f}_{\text {red_edge }}:=0.59 \quad$ Reduction for $1-1 / 2^{\prime \prime}$ edge distance (Minimum allowable)
$\mathrm{V}_{\text {allow }}:=\mathrm{V}_{\text {screw }} \cdot \mathrm{f}_{\text {red_spacing }} \cdot \mathrm{f}_{\text {red_edge }}=0.435 \mathrm{kip}$

Ok with (2) Anchor screws, check with Powder Actuated nails:

Design Nail Plate:
Check design with Powder actuated nails:
$\mathrm{V}_{\text {nail }}:=166 \mathrm{lbf} \quad$ This is the shear strength of a single Powder Actuated nail, with 1" of embedment (assuming using the 1516 SDC with $2-1 / 2^{\prime \prime}$ overall length, in 2 ksi concrete)

Contractor may use either (3) 1516SDC Powder Actuated nails or 1/4" Tapcon Blue Concrete screws
(A) Ramset ${ }^{\circ}$

DRIVIWG JOBSITE SPEED

Ramset fasteners may be specified by their type or catalog number to satisfy fastening requirements.
PIN SPECIFICATIONS

- Made from AISI $1000-1065$ steel. Alstempered to a core hardness of $52-56 \mathrm{Rc}$
- Typical tensile strength: $270,000 \mathrm{psi}$
- Typical shear strength: $162,000 \mathrm{psi}$
- STANDARD FINISHES Proprietary black Mecharical inc plate to a mirimum trickness of .0002 meets requirements of ASTM B695-Class 5 Type 1
Ramguad
FASTENERS IN NORMAL WEIGHT CONCRETE

PART NUMBER SERIES	SHANKDIAMETER (INCH)	MINIMUMPENETRATION (INCH)	INSTALLED IN STONE AGGREGATE CONCRETE CONCRETE COMPRESSIVE STRENGTH ALLOWABLELOAD - UMmate Load											
				2000				4000				6000		
			TENSIO	N (LBS)	SHEA	(LBS)	TENSIO	N (LBS)	SHEAR	(LBS)	TENSIOI	N (LBS)	SHEAR	(LBS)
1500/1600 SEFIES	0.145	$3 / 4$	50	655	66	730	100	511	104	552	\ldots
		1	152	943	166	1229	157	337	182	1342	\ldots	\ldots
		1-1/4	159	1078	265	1665	179	1043	267	1538	\ldots
		1-1/2	154	1450	340	2027	209	1357	342	1712
SP SERIES	0.150	$3 / 4$	150	803	105	786	81	493	82	454
SP SERIES	.150\%.180	1	154	1043	200	1773	243	1307	175	1037	189	1125	210	1177
		1-1/4	207	1553	230	1636	298	1749	218	1471	213	1568	305	1780
		1-1/2	\cdots	384	2126	391	1957	239	1886	594	2968
1900 SERIES	0.145	$3 / 4$	105	694	71	458	101	685		627

\& ASTM E1190. Note 3: Safety factors are based on coefficient of varlation. In accordance with ICC AC70, the safety factor will be no less tran 5 . Note \& Values
 otherwise approved. Note 8: For SI: $1 \mathrm{lof}=4.448 \mathrm{~N}, 1 \mathrm{lnch}=25.4 \mathrm{~mm}, 1 \mathrm{ksI}=6.89 \mathrm{MPa}$

PART NUMBERSERIES	SHANK DIA	EMBED	4000psi Normal Wt		6000 psi Normal Wt		3000 Lt WIt on W Deck Lower Flute	
			Tension	Shear	Tension	Shear	Tension	Shear
TE SERIES	0.157	3/4	71	137	109	142	106	265
		1	278	216	214	400	152	327
		1-1/4	377	317	415	349	164	330
		1-1/2	242	479	----	----	238	448
TEC100 90° Ceiling Clip	0.157	7/8	207	-----	----	----	88	----

```
Motes:
1) Fasterars hasted to ASTM E1190 8
```

CC-ES AC70 March 1, 2019)
2) Alowable loask are shom

textor will be no less then 5
4valuse shoun for steel bese

INSTALLED IN A36 STRUCTURAL STEEL										
$\begin{aligned} & \text { PART NUMBER } \\ & \text { SERIES } \end{aligned}$	SHANK DIA	SHANK TYPE	3/16		1/4		3/8		1/2	
			Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
TE SERIES	0.157	KNURLED	323	606	562	673	934	820	603	766

Design connection from nail plate to block to wall end column:
\#8 wood screw:
$\mathrm{N}_{\text {screw }}:=3$
$\mathrm{W}:=82 \frac{\mathrm{lbf}}{\text { in }} \quad$ Table 11.2b, NDS 2012 withdrawal of \#8 wood screws
$\mathrm{Z}:=78 \frac{\mathrm{lbf}}{\text { in }} \quad$ Table 11L, NDS 2012 for \#8 wood screws with 1in side member thickness (conservatively)
$C_{D}:=1.6 \quad$ NDS Table 2.3.2, wind load factor
$\begin{array}{llll}\mathrm{C}_{\mathrm{M}}:=1.0 & \mathrm{C}_{\mathrm{t}}:=1.0 & \mathrm{C}_{\mathrm{g}}:=1.0 & \mathrm{C}_{\Delta}:=1.0 \\ \mathrm{C}_{\mathrm{eg}}:=1.0 & \mathrm{C}_{\mathrm{di}}:=1.0 & \mathrm{C}_{\mathrm{tn}}:=1.0 & \text { Toe nail factor for screws is } 1.0\end{array}$
$\mathrm{Z}^{\prime}:=\mathrm{Z} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{g}} \cdot \mathrm{C}_{\Delta} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{C}_{\mathrm{di}} \cdot \mathrm{C}_{\mathrm{tn}}=124.8 \frac{\mathrm{lbf}}{\text { in }} \quad$ Table 10.3.1, NDS 2012
$\mathrm{W}^{\prime}:=\mathrm{W} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{C}_{\mathrm{tn}}=131.2 \frac{\mathrm{lbf}}{\text { in }} \quad$ Table 10.3.1, NDS 2012
$\mathrm{W}_{\text {applied }}:=\frac{\mathrm{P}_{\text {wind }}}{\cos (45 \mathrm{deg})}=567.109 \mathrm{lbf} \quad$ total withdrawal force
$\mathrm{L}_{\text {embed }}:=1.5$ in $=1.5$ in this is the required embedment depth into the nail plate, at a 45deg angle
$\mathrm{W}_{\text {resist }}:=\left(\mathrm{W}^{\prime} \cdot \mathrm{L}_{\text {embed }}\right) \cdot \mathrm{N}_{\text {screw }}=590.4 \mathrm{lbf}$

Check := if $\mathrm{W}_{\text {applied }} \leq \mathrm{W}_{\text {resist }} \quad=$ "Ok for Withdrawal"
||"Ok for Withdrawal" else
\|"Check"
$\mathrm{Z}_{\text {resist }}:=\left(\mathrm{Z}^{\prime} \cdot \mathrm{L}_{\text {embed }}\right) \cdot \mathrm{N}_{\text {screw }}=561.6 \mathrm{lbf}$
Check: $=$ if $\mathrm{P}_{\text {wind }} \leq \mathrm{Z}_{\text {resist }} \mid=$ "Ok for Shear"
|" "Ok for Shear" else
||"Check"
(3) \#8 wood screws required to carry applied wind loads, conservatively use GRK-RSS 1/4" Diameter screws, these do not split the wood and are stronger than wood screws.

RSS ${ }^{\text {u }}$ Rugged Structural Screws: Ideal for anywhere you would use a traditional lag screw and more. High tensile torque and shear strength means a $5 / 16^{*}$ diameter RSS ${ }^{\text {T4 }}$ screw has the same strength as a $1 / 2^{*}$ lag screw. Available from \#10 up to $3 / 8^{\circ}$ diameters in lengths from $1-1 / 2^{\circ}$ to $16^{\prime \prime}$. Approved for use in all applications that include treated lumber. Also available in PHEINOX ${ }^{\text {™ }}$ Stainless Steel, RSS ${ }^{\text {™ }}$ JTS used for joists and trusses, RSS ${ }^{\text {TM }}$ LPS for structural insulated panel systems and RSS ${ }^{\text {TM }}$ LTF designed for log home and timber frames.

FASTENER DESIGNATION		OVERALL LENGTH ${ }^{1}$ (inches)	LENGTH OF THREAD ${ }^{2}$ (inches)	MINORTHREADDIAMETER(inches)	SHANK DIAMETER (inches)	OUTSIDETHREADDIAMETER(inches)	ALLOWABLE STEEL STRENGTH			
		Bending Yield Strength ${ }^{4}$ $F_{y b}$ (psi)					Tensile (psi) [pounds]	Shear (psi) [pounds]		
$\boldsymbol{l}_{\substack{0 \\ \widetilde{2}}}$	$1 / 4 \times 21 / 2^{\prime \prime}$		$23 / 8$	$11 / 2$	0.150	0.169	0.239	170,427	$\begin{gathered} 188,301 \\ {[3,336]} \end{gathered}$	$\begin{gathered} 127,792 \\ {[2,264]} \end{gathered}$
	$1 / 4 \times 31 / 8^{\prime \prime}$	$31 / 8$	2							
	$1 / 4 \times 31 / 2^{\prime \prime}$	$31 / 2$	$23 / 8$							
	$5 / 16 \times 21 / 2^{\prime \prime}$	$23 / 8$	$11 / 2$	0.174	0.199	0.280	190,920	$\begin{aligned} & 178,051 \\ & {[4,247]} \end{aligned}$	$\begin{aligned} & 123,592 \\ & {[2,948]} \end{aligned}$	
	$5 / 16 \times 23 / 4^{\prime \prime}$	$23 / 4$	$13 / 4$							
	$5 / 16 \times 31 / 8^{7}$	$31 / 8$	$21 / 8$							
	$5 / 16 \times 31 / 2^{\prime}$	$31 / 2$	$21 / 2$							
	$5 / 16 \times 4^{\prime \prime}$	$37 / 8$	$23 / 4$							
	5/16× $51 / 8^{\prime \prime}$	5	$31 / 2$							
	$5 / 16 \times 6^{\prime \prime}$	$57 / 8$	$37 / 8$							
	3/8× $31 / 8^{\prime \prime}$	$31 / 8$	21/8	0.191	0.223	0.310	178,080	$\begin{gathered} 203,809 \\ {[5,824]} \end{gathered}$	$\begin{aligned} & 129,305 \\ & {[3,695]} \end{aligned}$	
	$3 / 8 \times 4^{\prime \prime}$	$37 / 8$	$23 / 4$							
	$3 / 8 \times 51 / 8^{\prime \prime}$	$51 / 8$	$31 / 2$							
	$3 / 8 \times 6^{11}$	$57 / 8$	4							
	$3 / 8 \times 71 / 4^{\prime \prime}$	7	$41 / 2$							
	$3 / 8 \times 8{ }^{\prime \prime}$	$77 / 8$	$43 / 8$							
	$3 / 8 \times 10^{\prime \prime}$	$93 / 4$	5							
	$3 / 8 \times 12^{\prime \prime}$	117/8	$57 / 8$							
	$3 / 8 \times 141 / 8^{\prime \prime}$	14 1/8	57/8							
	$3 / 8 \times 16^{\prime \prime}$	15 5/8	$53 / 4$							
$\stackrel{\otimes}{2}$	$1 / 4 \times 8{ }^{\prime}$	$77 / 8$	$27 / 8$	0.152	0.172	0.238	172,620	$\begin{aligned} & 172,950 \\ & {[3,155]} \\ & \hline \end{aligned}$	$\begin{aligned} & 109,635 \\ & {[2,000]} \\ & \hline \end{aligned}$	
$\stackrel{\text { I }}{\leftrightarrows}$	$3 / 8 \times 8^{\prime \prime}$	$77 / 8$	$37 / 8$	0.191	0.220	0.310	167,580	$\begin{gathered} 179,390 \\ {[5,144]} \end{gathered}$	$\begin{gathered} 114,525 \\ {[3,284]} \end{gathered}$	
	$3 / 8 \times 10^{\prime \prime}$	$97 / 8$	$37 / 8$							
	$3 / 8 \times 12^{\prime \prime}$	$113 / 4$	$37 / 8$							
$\left\lvert\, \begin{aligned} & \times \\ & \frac{0}{2} \\ & \frac{2}{u} \\ & \frac{1}{Q} \end{aligned}\right.$	$1 / 4 \times 21 / 2^{\prime \prime}$	$23 / 8$	$11 / 2$	0.152	0.170	0.237	111,460	$\begin{aligned} & \hline 103,799 \\ & {[1,886]} \end{aligned}$	$\begin{aligned} & 90,260 \\ & {[1,640]} \end{aligned}$	
	$5 / 16 \times 21 / 2^{\prime \prime}$	$23 / 8$	15/8	0.171	0.195	0.276	118,360	$\begin{aligned} & 104,767 \\ & {[2,419]} \end{aligned}$	$\begin{aligned} & 86,880 \\ & {[2,006]} \end{aligned}$	
	$5 / 16 \times 31 / 8^{\prime \prime}$	$31 / 8$	$21 / 8$							
	$5 / 16 \times 4^{1 \prime}$	$37 / 8$	$21 / 2$							
	5/16 $51 / 51 / 8^{\prime \prime}$	$51 / 8$	$33 / 8$							
	$5 / 16 \times 6^{\prime \prime}$	$57 / 8$	37/8							
$\stackrel{9}{5}$	$1 / 4 \times 33 / 8^{\prime \prime}$	$33 / 8$	$13 / 8$	0.153	0.173	0.240	226,373	$\begin{aligned} & 180,999 \\ & {[3,312]} \end{aligned}$	$\begin{aligned} & 126,131 \\ & {[2,308]} \end{aligned}$	
	$1 / 4 \times 5^{\prime \prime}$	5	$15 / 8$							
	$1 / 4 \times 63 / 4^{\prime \prime}$	$63 / 4$	$11 / 2$							

ULTIMATE LOAD VALUES TENSILE AND SHEAR

Determine max roof Snow Load:

Roof will be limited to a certain depth of snow, before it is removed, determine what depth of snow roof can carry: $\mathrm{W}_{\mathrm{lr}}:=19 \mathrm{psf} \quad$ roof live load on structure, per pg 4 of 2013 calculations package

$\mathrm{w}_{\text {dead }}:=1.5 \mathrm{psf}$	dead load of truss member
$\mathrm{p}_{\mathrm{g}}:=9 \mathrm{psf}$	design ground snow load is 60psf for this location in Maine, limit ground snow load to this amount

$\gamma_{\text {snow }}:=0.13 \cdot \frac{\mathrm{p}_{\mathrm{g}}}{\mathrm{ft}}+14 \mathrm{pcf}=15.17 \mathrm{pcf}$
$\mathrm{C}_{\mathrm{e}}:=1.0$
$C_{t}:=1.2$
$\mathrm{I}_{\mathrm{s}}:=1.0$
$\mathrm{p}_{\mathrm{f}}:=0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{s}} \cdot \mathrm{p}_{\mathrm{g}}=7.56 \mathrm{psf}$
$\mathrm{C}_{\mathrm{s}}:=0.85$
$\mathrm{p}_{\mathrm{s}}:=\mathrm{C}_{\mathrm{s}} \cdot \mathrm{p}_{\mathrm{f}}=6.426 \mathrm{psf}$
$\mathrm{h}_{\mathrm{b}}:=\frac{\mathrm{p}_{\mathrm{s}}}{\gamma_{\text {snow }}}=5.083$ in
$p_{\text {sunbalanced }}:=I_{s} \cdot p_{g}=9 \mathrm{psf}$

ASCE 7-16, 7.7-1

ASCE 7-16, Table 7.3-1, partially exposed

Table 7.3-2, unheated structure

Table 1.5-2

ASCE 7-16, 7.3-1

Figure 7.4-1, slippery surface with $\mathrm{Ct}=1.2$
sloped roof snow load, 7.4-1
this is the depth of snow allowed on the roof
this is the unbalanced snow load for a gable roof (Figure 7.6-2)

Combined force on roof:

$\mathrm{S}_{\text {truss }}:=3 \mathrm{ft}$	Truss spacing	
$\mathrm{w}_{\text {comb }}:=\left(\mathrm{w}_{\text {dead }}+\mathrm{p}_{\text {sunbalanced }}\right) \cdot \mathrm{S}_{\text {truss }}=31.5 \mathrm{plf}$		$\mathrm{D}+\mathrm{S}$ controls for combined loads
$\mathrm{L}_{1}:=11 \mathrm{ft}+2$ in	$\mathrm{L}_{2}:=6 \mathrm{ft}+10$ in	
$\mathrm{R}_{1}:=\frac{\mathrm{w}_{\text {comb }} \cdot \mathrm{L}_{1}}{2}=175.875 \mathrm{lbf}$	distance from exterior wall to support, to center of truss	
$\mathrm{R}_{3}:=\frac{\mathrm{w}_{\text {comb }} \cdot \mathrm{L}_{2}}{2}=107.625 \mathrm{lbf}$	Reaction at exterior wall	
$\mathrm{R}_{2}:=\mathrm{R}_{1}+\mathrm{R}_{3}=283.5 \mathrm{lbf}$	reaction at center of truss	

Determine max roof Snow Load:

Determine flexure and shear in sections:
$\mathrm{L}_{\text {long }}:=\frac{\mathrm{L}_{1}}{\sin (71.5 \mathrm{deg})}=11.775 \mathrm{ft}$
actual length of long section, measured along slope of roof
$\mathrm{L}_{\text {short }}:=\frac{\mathrm{L}_{2}}{\sin (71.5 \mathrm{deg})}=7.206 \mathrm{ft}$
actual length of short section, measured along slope of roof
$M_{\text {ulong }}:=\frac{\mathrm{w}_{\text {comb }} \cdot \mathrm{L}_{\text {long }}{ }^{2}}{8}=6551.425 \mathrm{lbf} \cdot$ in
$\mathrm{V}_{\text {ulong }}:=\frac{\mathrm{W}_{\text {comb }} \cdot \mathrm{L}_{\text {long }}}{2}=185.459 \mathrm{lbf}$
$M_{\text {ushort }}:=\frac{W_{\text {comb }} \cdot \mathrm{L}_{\text {short }}{ }^{2}}{8}=2453.318 \mathrm{lbf} \cdot$ in
$\mathrm{V}_{\text {ushort }}:=\frac{\mathrm{W}_{\text {comb }} \cdot \mathrm{L}_{\text {short }}}{2}=113.49 \mathrm{lbf}$
$\mathrm{P}_{\text {comp }}:=\mathrm{R}_{3} \cdot \cos (71.5 \mathrm{deg})=34.15 \mathrm{lbf}$
compressive force induced by load applied at center of truss (no support at center)
Determine capacity of truss member:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}:=849.9 \mathrm{psi} \quad \mathrm{~F}_{\mathrm{cE}}:=1328.8 \mathrm{psi} \quad \text { from } \mathrm{pg} 12 \text { of } 2013 \text { calculations } \\
& \mathrm{F}_{\mathrm{b}}^{\prime}:=883.2 \mathrm{psi} \quad \text { from } \mathrm{pg} 15 \text { of } 2013 \text { calculations } \\
& \mathrm{F}_{\mathrm{v}}^{\prime}:=155.3 \text { psi } \quad \text { from } \mathrm{pg} 15 \text { of } 2013 \text { calculations } \\
& \mathrm{b}_{\text {timber }}:=1.5 \text { in } \quad \mathrm{d}_{\text {timber }}:=5.5 \text { in } 2 \times 6 \text { top chord } \\
& \mathrm{S}_{\mathrm{xchord}}:=\frac{\mathrm{b}_{\text {timber }} \cdot \mathrm{d}_{\text {timber }}{ }^{2}}{6}=7.563 \mathrm{in}^{3} \quad \mathrm{~A}_{\text {chord }}:=\mathrm{b}_{\text {timber }} \cdot \mathrm{d}_{\text {timber }}=8.25 \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{b}}:=\frac{\max \left(\mathrm{M}_{\text {ushort }}, M_{\text {ulong }}\right)}{\mathrm{S}_{\text {xchord }}}=866.304 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{v}}:=\frac{\max \left(\mathrm{V}_{\text {ulong }}, \mathrm{V}_{\text {ushort }}\right) \cdot 3}{2 \cdot \mathrm{~A}_{\text {chord }}}=33.72 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{c}}:=\frac{\mathrm{P}_{\text {comp }}}{\mathrm{A}_{\text {chord }}}=4.139 \mathrm{psi}
\end{aligned}
$$

Determine max roof Snow Load:

Check shear, and combined flexure and compression:
Shear:

Combined flexure and Compression:
Check:= if $\left(\frac{f_{c}}{F_{c}^{\prime}}\right)^{2}+\frac{f_{b}}{F_{b}^{\prime} \cdot\left(1-\frac{f_{c}}{F_{c E}}\right)} \leq 1.0=$ "Ok for Combined forces"
|| "Ok for Combined forces"
else
||"Check"

Top chord of truss requires the snow live load to be limited to 9 psf, which equates to $5^{\prime \prime}$ of snow depth, check roof girders:

Roof Girder Design:

$\mathrm{w}_{\text {girder }}:=\frac{\mathrm{R}_{2}}{\mathrm{~S}_{\text {truss }}}=94.5 \mathrm{plf}$
$\mathrm{L}_{\text {girder }}:=12 \mathrm{ft}$

$\mathrm{M}_{\text {girder }}:=\frac{\mathrm{w}_{\text {girder }} \cdot \mathrm{L}_{\text {girder }}{ }^{2}}{8}=20412 \mathrm{lbf} \cdot$ in
$\mathrm{V}_{\text {girder }}:=\frac{\mathrm{w}_{\text {girder }} \cdot \mathrm{L}_{\text {girder }}}{2}=567 \mathrm{lbf}$
$\mathrm{b}_{\text {girder }}:=1.5$ in $\quad \mathrm{d}_{\text {girder }}:=7.25$ in
$\mathrm{S}_{\text {xgirder }}:=2 \cdot \frac{\mathrm{~b}_{\text {girder }} \cdot \mathrm{d}_{\text {girder }}{ }^{2}}{6}=26.281 \mathrm{in}^{3}$
$\mathrm{A}_{\text {girder }}:=\mathrm{b}_{\text {girder }} \cdot \mathrm{d}_{\text {girder }}=10.875 \mathrm{in}^{2}$
$f_{\text {bgirder }}:=\frac{M_{\text {girder }}}{S_{\text {xgirder }}}=776.675 \mathrm{psi}$
$\mathrm{f}_{\text {vgirder }}:=\frac{\mathrm{V}_{\text {girder }}}{\mathrm{A}_{\text {girder }} \cdot 2}=26.069 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}^{\prime}:=885.8 \mathrm{psi} \quad \mathrm{F}_{\mathrm{v}}^{\prime}:=155.25 \mathrm{psi} \quad$ See pg 21 of 2013 calculations

Roof Girder Design:

$$
\begin{aligned}
& \text { Check }:= \text { if } \mathrm{f}_{\mathrm{bgirder}} \leq \mathrm{F}_{\mathrm{b}} \\
& \| \text { "Ok for Flexure" } \\
& \text { else } \\
& \| \text { "Check" }
\end{aligned} \quad=\text { "Ok for Flexure" }
$$

Roof girder is ok for flexure and shear with reduced snow load, all other members ok for applied snow load from roof by inspection, as they met 60psf limit from 2013 calculations:

Design floor load under existing apartment:

$\sigma_{\mathrm{LL}}:=40 \mathrm{psf} \quad$ this is the design live load recommended for living space (ASCE 7-16, Table 4.3-1)

Floor Joists:
(2x8 @ 2'-0"):
$\mathrm{b}_{\text {joist }}:=1.5$ in $\quad \mathrm{d}_{\text {joist }}:=7.25$ in joist dimensions
$\mathrm{S}_{\text {joist }}:=2 \mathrm{ft}$ spacing of joists
$\mathrm{S}_{\mathrm{xjoist}}:=\frac{\mathrm{b}_{\text {joist }} \cdot \mathrm{d}_{\text {joist }}{ }^{2}}{6}=1.095 \mathrm{ft} \cdot \mathrm{in}^{2} \quad \quad \mathrm{~A}_{\text {joist }}:=\mathrm{b}_{\mathrm{joist}} \cdot \mathrm{d}_{\text {joist }}=0.906 \mathrm{ft} \cdot$ in
$\mathrm{w}_{\mathrm{LL}}:=\sigma_{\mathrm{LL}} \cdot \mathrm{S}_{\mathrm{joist}}=80$ plf distributed live load on joist
$\sigma_{\mathrm{DL}}:=5 \mathrm{psf}$ assumed dead load on joist
$\mathrm{w}_{\mathrm{DL}}:=\sigma_{\mathrm{DL}} \cdot \mathrm{S}_{\text {joist }}=10$ plf distributed dead load on joist
$\mathrm{F}_{\text {bjoist }}^{\prime}:=1069.5 \mathrm{psi}$ page 32 of 2013 calculations
$\mathrm{L}_{\text {joist }}:=12 \mathrm{ft}$ span length of joists
$\mathrm{M}_{\mathrm{joist}}:=\frac{\left(\mathrm{w}_{\mathrm{LL}}+\mathrm{w}_{\mathrm{DL}}\right) \cdot \mathrm{L}_{\mathrm{joist}}^{2}}{8}=19440 \mathrm{lbf} \cdot$ in \quad Moment in joist
$f_{\text {bjoist }}:=\frac{M_{\text {joist }}}{S_{\text {xjoist }}}=1479.382 \mathrm{psi}$
$\mathrm{f}_{\text {overstressed }}:=\frac{\mathrm{f}_{\text {bjoist }}-\mathrm{F}_{\text {bjoist }}^{\prime}}{\mathrm{F}_{\text {bjoist }}^{\prime}}=0.383$
joists are overstressed for flexure, determine required repair to required capacity

Design floor load under existing apartment:

Sister additional 2×8 to all floor joists:
$\mathrm{f}_{\text {bjoistnew }}:=\frac{\mathrm{M}_{\text {joist }}}{2 \cdot \mathrm{~S}_{\mathrm{xjoist}}}=739.691 \mathrm{psi}$
Check := if $\mathrm{f}_{\text {bjoistnew }} \leq \mathrm{F}_{\text {bjoist }}^{\prime} \mid=$ "Ok for Flexure"
$\|$ "Ok for Flexure"
else
\|"Check"

Ok to sister additional 2×8 to each floor joist under apartment:

Check Carrying beams:

Existing (3) 2×8 's are undersized, check with modified timber kicker repair called out in 2013:

$$
\begin{aligned}
& \mathrm{L}_{\text {trib }}:=12 \mathrm{ft} \\
& \mathrm{w}_{\text {carry }}:=\left(\begin{array}{l}
\text { tributary width of carrying beam } \\
\left.\hline \mathrm{psf}+\sigma_{\mathrm{LL}}\right) \cdot \mathrm{L}_{\text {trib }}=573.6 \mathrm{plf} \\
\text { 7.8psf dead load per } 2013 \text { calculations, } \mathrm{pg} 37 \\
\mathrm{~L}_{\text {carry }}:=12 \mathrm{ft}
\end{array}\right.
\end{aligned}
$$

Install kickers 3 ft from supports (worst case moment is on middle section, conservatively assuming simply supported, non-continuous)

$$
\begin{aligned}
& \mathrm{L}_{\text {carrykick }}:=\mathrm{L}_{\text {carry }}-2 \cdot 3 \mathrm{ft}=6 \mathrm{ft} \\
& \mathrm{M}_{\text {carry }}:=\frac{\mathrm{W}_{\text {carry }} \cdot \mathrm{L}_{\text {carrykick }}{ }^{2}}{8}=30974.4 \mathrm{lbf} \cdot \text { in } \\
& \mathrm{V}_{\text {carry }}:=\frac{\mathrm{w}_{\text {carry }} \cdot \mathrm{L}_{\text {carrykick }}}{2}+\frac{\mathrm{w}_{\text {carry }} \cdot 3 \mathrm{ft}}{2}=2581.2 \mathrm{lbf} \quad \text { Reaction at kicker support } \\
& \mathrm{b}_{\text {carry }}:=1.5 \text { in } \quad \mathrm{d}_{\text {carry }}:=7.25 \text { in } \\
& \mathrm{S}_{\text {xcarry }}:=\frac{\mathrm{b}_{\text {carry }} \cdot \mathrm{d}_{\text {carry }}{ }^{2}}{6}=13.141 \mathrm{in}^{3} \quad \quad \mathrm{~A}_{\text {carry }}:=\mathrm{b}_{\text {carry }} \cdot \mathrm{d}_{\text {carry }}=10.875 \mathrm{in}^{2} \\
& \mathrm{f}_{\text {bcarry }}:=\frac{\mathrm{M}_{\text {carry }}}{3 \cdot \mathrm{~S}_{\text {xcarry }}}=785.716 \mathrm{psi} \\
& \mathrm{~F}_{\text {bcarry }}:=1005.6 \text { psi pg } 39 \text { of } 2013 \text { calcs } \\
& \text { Check := if } \mathrm{f}_{\text {bcarry }} \leq \mathrm{F}_{\text {bcarry }}^{\prime} \quad=\text { "Ok for Flexure" } \\
& \begin{array}{l}
\text { |"'Ok for Flexure" } \\
\text { else } \\
\text { \|"Check" }
\end{array}
\end{aligned}
$$

Check Carrying beams:

$$
\begin{aligned}
\mathrm{f}_{\text {vcarry }}:= & \frac{3 \cdot \mathrm{~V}_{\text {carry }}}{2 \cdot\left(3 \cdot \mathrm{~A}_{\text {carry }}\right)}=118.676 \mathrm{psi} \\
\mathrm{~F}_{\text {vcarry }}^{\prime}:= & 135 \mathrm{psi}
\end{aligned} \quad \begin{aligned}
\text { Check }:= & \text { if } \mathrm{f}_{\text {varry }} \leq \mathrm{F}^{\prime} \text { vcarry } \\
& \begin{array}{l}
\| \text { "Ok for Shear" }
\end{array}=\text { Ok for Shear" } \\
& \text { else } \\
& \| \text { "Check" }
\end{aligned}
$$

Carrying beam is ok with kicker installed, check kicker
Kicker design:

$$
\begin{aligned}
& \mathrm{P}_{\text {ukicker }}:=\frac{\mathrm{V}_{\text {carry }}}{\cos (45 \mathrm{deg})}=3650.368 \mathrm{lbf} \\
& \mathrm{I}_{\mathrm{e}}:=\sqrt{(3 \mathrm{ft})^{2}+(3 \mathrm{ft})^{2}}=4.243 \mathrm{ft}
\end{aligned}
$$

Use 4×4 kicker:

$$
\mathrm{d}_{\text {kicker }}:=3.5 \text { in } \quad \mathrm{b}_{\text {kicker }}:=3.5 \text { in } \quad \mathrm{A}_{\text {kicker }}:=\mathrm{d}_{\text {kicker }} \cdot \mathrm{b}_{\text {kicker }}=12.25 \mathrm{in}^{2}
$$

$\mathrm{f}_{\text {ckicker }}:=\frac{\mathrm{P}_{\text {ukicker }}}{A_{\text {kicker }}}=297.989 \mathrm{psi}$
Determine compressive capacity of 4×4 :

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}:=1000 \mathrm{psi} \quad \mathrm{E}_{\text {min }}:=400000 \mathrm{psi} \quad \text { NDS Table 4A } \\
& C_{D}:=1.0 \quad \text { NDS Table 2.3.2, for live load } \\
& \mathrm{C}_{\mathrm{m}}:=1.0 \quad \mathrm{C}_{\mathrm{t}}:=1.0 \quad \mathrm{C}_{\mathrm{F}}:=1.15 \quad \mathrm{C}_{\mathrm{i}}:=1.0 \quad \mathrm{C}_{\mathrm{T}}:=1.0 \\
& \mathrm{c}:=0.8 \quad \text { For sawn lumber } \\
& \mathrm{l}_{\mathrm{ed}}:=\frac{\mathrm{l}_{\mathrm{e}}}{\mathrm{~d}_{\text {timber }}}=9.257 \quad \quad \mathrm{E}_{\text {min }}{ }^{\prime}:=\mathrm{E}_{\text {min }} \cdot \mathrm{C}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{T}}=400000 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cE}}:=\frac{0.822 \cdot \mathrm{E}_{\min }^{\prime}}{\left(\mathrm{l}_{\mathrm{ed}}{ }^{2}\right)}=3837.269 \mathrm{psi} \quad \mathrm{~F}_{\mathrm{c}^{\prime}}:=\mathrm{F}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{F}} \cdot \mathrm{C}_{\mathrm{i}}=1150 \mathrm{psi} \\
& C_{\mathrm{P}}:=\frac{1+\left(\frac{\mathrm{F}_{\mathrm{cE}}}{\mathrm{~F}_{\mathrm{c}^{\prime \prime}}}\right)}{2 \cdot \mathrm{c}}-\sqrt{\left(\frac{1+\left(\frac{\mathrm{F}_{\mathrm{CE}}}{\mathrm{~F}_{\mathrm{c}^{\prime \prime}}}\right)}{2 \cdot \mathrm{c}}\right)^{2}-\frac{\left(\frac{\mathrm{F}_{\mathrm{cE}}}{\mathrm{~F}_{\mathrm{c}^{\prime \prime}}}\right)}{\mathrm{c}}}=0.928 \\
& \text { NDS 3.7-1 }
\end{aligned}
$$

Kicker design:

$\mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}:=\mathrm{F}_{\mathrm{c}^{\prime \prime}} \cdot \mathrm{C}_{\mathrm{P}}=1067.681 \mathrm{psi}$
$\begin{aligned} \text { Check }:= & \text { if } \mathrm{f}_{\mathrm{ckicker}} \leq \mathrm{F}_{\mathrm{c}} \\ & \left.\begin{array}{l}\| \text { "Ok for Compression" } \\ \\ \text { else } \\ \\ \|\end{array} \right\rvert\,=\text { "Check" }\end{aligned}$
Kickers are ok for compression, check column for applied loads:

$$
\begin{array}{l|l}
\mathrm{P}_{\text {deadcolumn }}:=1218.4 \mathrm{lbf} & \text { dead load applied to column } \\
\hline \mathrm{P}_{\text {livecolumn }}:=40 \mathrm{psf} \cdot(12 \mathrm{ft} \cdot 12 \mathrm{ft})=5760 \mathrm{lbf} & \text { live load applied to column } \\
\hline \mathrm{P}_{\text {snowcolumn }}:=7786 \mathrm{lbf} & \text { Snow load applied to column } \\
\hline
\end{array}
$$

for temporary, snow is limited on roof. However, this repair to the floor under the apartment is a permanent repair, include snow load combination check for when roof is repaired and snow load restrictions are no longer required:

$$
\begin{array}{l|l|l|}
P_{1}:=P_{\text {deadcolumn }}+P_{\text {livecolumn }}=6.978 \text { kip } & & \text { Load combination 1 } \\
\hline P_{2}:=P_{\text {deadcolumn }}+P_{\text {snowcolumn }}=9.004 \text { kip } & & \text { Load combination 2 } \\
\hline P_{3}:=P_{\text {deadcolumn }}+0.75 \cdot P_{\text {livecolumn }}+0.75 \cdot P_{\text {snowcolumn }}=11.378 \text { kip } & \text { Load combination 3 } \\
\hline P_{\text {column }}:=\max \left(P_{1}, P_{2}, P_{3}\right)=11.378 \text { kip } & & \\
\hline P_{\text {allow }}:=17310.2 \text { lbf } & \text { pg } 43 \text { of } 2013 \text { calculations } & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { Check }:= \text { if } \mathrm{P}_{\text {column }} \leq \mathrm{P}_{\text {allow }} \\
& \| \text { "Column Ok for applied loads" } \\
& \text { else } \\
& \| \text { "Check" } \\
& \text { "Column Ok for applied loads" } \\
& \\
& \\
& \\
& \\
& \text { "Check }
\end{aligned}
$$

Interior columns are ok for applied loads from apartment, check exterior wall with temporary lateral bracing without sheathing:

Exterior Sheathing:
Check exterior wall on 1st floor, worst case:
conservatively, check with 40psf live load on both floors, 2nd and third floor are limited to approximately 16psf, except where apartment has been improved, use 40psf design for both floors conservatively:

| $\mathrm{P}_{\text {roof }}:=\mathrm{R}_{1}=175.875 \mathrm{lbf}$ | snow and dead load from roof |
| :--- | :--- | :--- |
| $\mathrm{P}_{\text {roof_dead }}:=\frac{1.5 \mathrm{psf} \cdot 11.17 \mathrm{ft}}{2} \cdot 2 \mathrm{ft}=16.755 \mathrm{lbf}$ | dead load from roof |
| $\mathrm{P}_{\text {3rd_live }}:=\sigma_{\mathrm{LL}} \cdot(2 \mathrm{ft} \cdot 6 \mathrm{ft})=480 \mathrm{lbf}$ | Loads from 3rd floor |
| $\mathrm{P}_{2 \text { nd_live }}:=\mathrm{P}_{3 \text { rd_live }}=480 \mathrm{lbf}$ | Loads from 2nd floor |
| $\mathrm{P}_{\text {3rd_dead }}:=7.8 \mathrm{psf} \cdot(2 \mathrm{ft} \cdot 6 \mathrm{ft})=93.6 \mathrm{lbf}$ | dead loads from 3rd floor |
| $\mathrm{P}_{\text {2nd_dead }}:=\mathrm{P}_{\text {3rd_dead }}=93.6 \mathrm{lbf}$ | dead loads from 2nd floor |

Load combinations:

$$
\begin{aligned}
& P_{1 e x t}:=P_{\text {roof_dead }}+P_{3 \text { rd_live }}+P_{2 \text { nd_live }}+P_{3 \text { rd_dead }}+P_{2 \text { nd_dead }}=1163.955 \mathrm{lbf} \\
& P_{2 e x t}:=P_{\text {roof }}+P_{\text {roof_dead }}+P_{3 \text { rd_dead }}+P_{2 \text { nd_dead }}=379.83 \mathrm{lbf} \\
& P_{3 \text { ext }}:=P_{\text {roof_dead }}+P_{3 \text { rd_dead }}+P_{2 \text { nd_dead }}+0.75 \cdot\left(P_{\text {roof }}+P_{3 \text { rd_live }}+P_{2 \text { nd_live }}\right)=1055.861 \mathrm{lbf} \\
& P_{\text {ext }}:=\max \left(P_{1 \text { ext }}, P_{2 \text { ext }}, P_{3 \text { ext }}\right)=1163.955 \mathrm{lbf}
\end{aligned}
$$

Determine capacity of existing 2×4 studs, with bracing at midspan between floors:

$$
\mathrm{d}_{\mathrm{ext}}:=3.5 \text { in } \quad \mathrm{b}_{\mathrm{ext}}:=1.5 \text { in }
$$

$$
\mathrm{A}_{\mathrm{ext}}:=\mathrm{d}_{\mathrm{ext}} \cdot \mathrm{~b}_{\mathrm{ext}}=5.25 \mathrm{in}^{2}
$$

$$
\mathrm{f}_{\mathrm{cext}}:=\frac{\mathrm{P}_{\mathrm{ext}}}{\mathrm{~A}_{\mathrm{ext}}}=221.706 \mathrm{psi}
$$

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{F}}:=1.05 & \text { For } 2 \times 4 ' \mathrm{~s}
\end{array}
$$

$$
\mathrm{l}_{\mathrm{e} 1}:=(7 \mathrm{ft}+10 \mathrm{in})=7.833 \mathrm{ft} \quad \text { length of member unbraced between floors }
$$

$$
\mathrm{l}_{\mathrm{e} 2}:=0.5 \cdot \mathrm{l}_{\mathrm{e} 1}=3.917 \mathrm{ft} \quad \text { unbraced halfway between floors }
$$

$$
\mathrm{l}_{\mathrm{ed} 1}:=\frac{\mathrm{l}_{\mathrm{e} 1}}{\mathrm{~d}_{\mathrm{ext}}}=26.857 \quad \mathrm{l}_{\mathrm{ed} 2}:=\frac{\mathrm{l}_{\mathrm{e} 2}}{\mathrm{~b}_{\mathrm{ext}}}=31.333
$$

Exterior Sheathing:

$$
\begin{aligned}
& \mathrm{l}_{\mathrm{ed}}:=\max \left(\mathrm{l}_{\mathrm{ed} 1}, \mathrm{l}_{\mathrm{ed} 2}\right)=31.333 \\
& \mathrm{~F}_{\mathrm{cE}}:=\frac{0.822 \cdot \mathrm{E}_{\min }^{\prime}}{\left(\mathrm{l}_{\mathrm{ed}}^{2}\right)}=334.903 \mathrm{psi} \quad \quad \mathrm{~F}_{\mathrm{c}^{\prime \prime}}:=\mathrm{F}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{F}} \cdot \mathrm{C}_{\mathrm{i}}=1050 \mathrm{psi} \\
& \mathrm{C}_{\mathrm{P}}:=\frac{1+\left(\frac{\mathrm{F}_{\mathrm{cE}}}{\mathrm{~F}_{\mathrm{c}^{\prime \prime}}}\right)}{2 \cdot \mathrm{c}}-\sqrt{\left(\frac{\left.1+\left(\frac{\mathrm{F}_{\mathrm{cE}}}{\mathrm{~F}_{\mathrm{c}^{\prime \prime}}}\right)\right)^{2}}{2 \cdot \mathrm{c}}\right)^{\left(\frac{\mathrm{F}_{\mathrm{cE}}}{\mathrm{~F}_{\mathrm{c}^{\prime \prime}}}\right)}} \mathrm{c}=0.294 \quad \text { NDS 3.7-1 } \\
& \mathrm{F}_{\mathrm{c}}^{\prime}:=\mathrm{F}_{\mathrm{c}^{\prime \prime}} \cdot \mathrm{C}_{\mathrm{P}}=309.11 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
\text { Check : }= & \text { if } \mathrm{f}_{\text {cext }} \leq \mathrm{F}_{\mathrm{c}} \\
& \| \text { "Ok for Compression" } \\
& \text { else } \\
& \| \text { "Check" }
\end{aligned}
$$

with bracing at midspan between floors, ok for temporary bracing, with floor loads limited and snow loads reduced to max 5in depth

